Saturday, March 8, 2014

A novel multistep dip-coating method for the fabrication of anode-supported microtubular solid oxide fuel cells

A novel multistep dip-coating method was developed and successfully applied to the fabrication of anode-supported microtubular solid oxide fuel cells (SOFCs) using carbon rods as combustible cores. The fabricated microtubular SOFCs consisted of Ni-yttria-stabilized zirconia (YSZ), YSZ, strontium-doped lanthanum manganite (LSM)-YSZ, and LSM as the anode, electrolyte, cathode, and cathode current collector materials, respectively. To investigate the role of anode porosity on cell performance, two types of anode supports were prepared: one without a pore former and the other with a 10 wt.% graphite pore former. The microstructural features of the microtubular SOFCs were examined using scanning electron microscope images whereas the electrochemical performance was characterized by electrochemical impedance spectroscopy measurements as well as I-V characteristic curves. The results showed that the method used is a simple and low-cost alternative to conventional methods for the fabrication of microtubular SOFCs. We found that the anode porosity played an important role in improving the overall performance of the microtubular SOFC by reducing the concentration polarization.

Click here to access the full article published in Journal of Solid State Electrochemistry.

No comments:

Post a Comment